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Matrices of the group SC(n) are parametcrized in several ways by a system of generalized 

polar coordinates. The parameters have an interpretation in terms of a factormg of SC;(n) 

matrices into matrices of SL:(2) type. They yield a separable form for the group invariant 

measure and a continuous map of SC;(n) to the unit hypercube in n2 1 dimensions such that 

the invariant measure is the Euclidean measure. Random sampling of SC’(n) matrices dis- 

tributed according to the invariant measure and certain related measures is facilitated. An 

algorithm for random selection of Sc(2) stepping matrices with prescribed tract average and 

standard deviation is given. Extensions to G(n). SO(n). and O(n) are made. 

I. IN~TR~DUCTION 

Recent years have seen a major growth in the application and sophistication of 
Monte Carlo methods for elementary particle physics, and in particular, for lattice 
gauge formulations of quantum chromodynamics. These methods inevitably strain 
the memory and computing speed capabilities of the most advanced computers, and 
strain the budgets of the researchers as well. Such computational physics efforts 
must seek to optimize the numerical algorithms on which the Monte Carlo methods 
depend. 
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In the applications to quantum chromodynamics, functions of large arrays of 
SU(3) matrices are averaged with respect to the invariant measure (Haar measure) 
of SU(3) as a topological group. The Metropolis algorithm [l] for generating such 
arrays calls for the random selection of “stepping matrices,” which are SU(3) 
matrices distributed with a weighting which biases the selection in favor of a 
suitably small neighborhood of the unit matrix. Because the “distance” of a matrix 
from the unit matrix is conveniently expressed in terms of its trace, we can speak of 
truce-biased sampling of matrices. 

Strictly speaking, the Metropolis method requires only that the sampling process 
for stepping matrices be rich enough to move a matrix ergodically through the 
matrix group in a continuing sequence of steps. We find, however, that the 
efficiency of the method, and hence the computing speed for thcrmalization and 
decorrelation of the SU(3) arrays, is enormously improved with respect to some 
current approaches by an optimized algorithm for sampling from a distribution 
which is trace-biased, but otherwise proportional to the invariant measure. The 
algorithms given here could also be a starting point for sampling more general par- 
tially invariant distributions as in the heat-bath technique [2] for lattice gauge 
calculations. 

This is the first of three papers in which we study sampling from invariant or par- 
tially invariant distributions of matrices, that is, from matrices distributed over a 
matrix group uniformly with respect to the invariant measure of the group or dis- 
tributed in a closely related way. Much of the analysis applies equally well to the 
matrix groups SU(n) for general n and, with slight modification, to the groups 
U(n), O(n), andSO as well. The present paper addresses the more gcncral aspects 
of our method. The second paper focuses on sampling from trace-biased invariant 
distributions from SU(3). Specilic application to generation of lattice configurations 
for quantum chromodynamics, and the results of numerical cxpcriments on thcr- 
malization and decorrelation rates for different lattice sizes and spacings will be 
given in the third paper. 

In the next section, we develop a parameterization of SU(n) matrices in terms of 
variables derived from the polar coordinate representations of some of the (com- 
plex-valued) matrix elements. The scheme follows the polar coordinate decom- 
position for vectors in a Zn-dimensional space in a recently described method for 
sampling of points in or on a hypcrspherc of arbitrary dimension [3]. These po!ar 
parameters have a simple interpretation in terms of parameters for SU(2) matrices 
which occur as factors in a general factorization scheme for SC;(n) matrices. In fact, 
Section II provides three schemes of factorization and three associated 
parameterizations. The first is for sampling of SU(f?) matrices distributed according 
to the invariant measure. The third separates out the unitary invariants of the 
matrix (i.e., the set of eigenvalucs) from the set of additionally needed parameters 
and is more appropriate for trace-biased invariant sampling. The secund method is 
merely a preliminary leading to the third. 

Some of our factoring and measure formulas are similar to those of Murnaghan 
[4]. But the need for a structure to facilitate cfhcient random sampling motivated 
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significant departures from Murnaghan’s treatment, as well as extensions of it. Sec- 
tion III develops formulas for invariant measure in terms of various 
parameterizations. Section IV gives an algorithm for trace-biased, but otherwise 
invariant, sampling of SU(2) matrices in which the average and the standard 
deviation of the trace distribution are independent input parameters. Section V out- 
lines briefly how the same techniques apply to paramcterization, factoring, 
invariant measure, and sampling of SO(n). Extension to C;(n) and O(n) is also 
noted. 

II. PARAMETERIZATIOSS FOR Sl;(n) MATRICES 

1. A Factorization Formulu 

Let A, bc the matrix elements of an SC(n) matrix, i.e., an n x n unitary 
unimodular matrix A. Let A act on an n-dimensional vector space I+‘,,, where W:, is 
represented as a direct sum, 

of l-dimensional vector spaces V U) We represent the rows of A as vectors: . 

Ai= {A,,. /Ii1 ,..., Ain;. 

The general n x n complex matrix is specified by 2n2 real parameters, but the 
orthonormality and phase conditions on A: 

A,*. A, = 6,i, 1 < i<j<n, (2.1) 

det A= +l, (2.2) 

impose nr + 1 constraints, leaving n’ - 1 free parameters. 
We now provide a set of generalized polar coordinates adequate to parameterize 

such SU(n) matrices for arbitrary n. This will, at the same time, yield a prescription 
for factoring SU(n) matrices into matrices of SU(2) type. 

To begin, let the last row of A be expressed in terms of 2n polar parameters as 
follows: 

nni = Ppll /?,,2 . P,,.i- I Pni cxp(irb,,,f 

A.,, = lSnlPn2.. . P,,, l P,, Witi,,,,). (2.3) 



92 GURALNIK, WARNOCK, AND ZEMACH 

The phases dni lie on the interval (0,2n) and the radial parameters pni are on (0, 1). 
The complementary radial parameters pni are also on (0, 1) and are related to the 
Pni ‘JY 

(Pni)* + (Pni)* = 1. 

These conditions can be met whenever 1 A,, I* < 1. In fact, 

1 - IAnI = fi (PJ2, (2.4) 
i=l 

so that when the normalization condition is applied to A,,, then p,, is no longer a 
variable; instead pnn = 1, p,, = 0. 

Let (n - 1, n) denote the SW(n) matrix which acts as the SU, matrix 

( 
Pn,,z ~ 1 exp( - i&J - P~,~ - 1 exp( - &,, ~ 1 ) 
P~,~ - 1 ew(hL,, - 1) A,, - 1 exp(iA,J 1 

on the subspace V +i) @ V@) of W, and which acts as the unit matrix on the com- 
plement of this subspace. And for 1~ i< y1- 2, let (i,) denote the SU(n) matrix 
which acts on V(‘) 0 V’“’ as 

Pni - Pni w( - $iti) 

Pni ew(&J PM 

and as the unit matrix on the complement subspace. The (I, n) matrices will be 
referred to as “reduced” matrices. Their SU, parts have real diagonal elements and, 
in the usual map from SU, to SO,, correspond to 3-dimensional rotations whose 
axes of rotation lie in the xy plane. 

Next define an SU(n) matrix P, by 
-- - 

P, = (1, n)(2, n) . . . (n - 2, n)(n - 1, n). G-5) 

The matrix elements of P, can be written out according to a systematic rule 
obtained by induction on the product (2.5) and detailed in Subsection 4, below. 

The essential feature of this construction is that the last row of P, coincides with 
the last row of A. Now consider the last column of AP,’ : 

(AP,l),=A,(P,)~=A,~A$=6,. 

For the last now, we have 

Thus, we can write 

AP,‘= ; ; , 
( > 

(2.6a) 
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and 

A= P 
IT’ 

(2.6b) 

where B is an Sli’(n - 1) matrix. This is the first step in the factorization of A into 
matrices of SC’,-type. The elements B,, are functions of the polar coordinates 
already defined and of the elements A,, for i, j < ?I - 1. Useful expressions for these 
B,i are given below in Subsection 4. Then the last row of R can be used to define a 
new set of polar parameters p,, ,,,, qSn _ ,,;, and an SU(n - 1) matrix P,, _, and so 
on. The final factorized form is 

A=P2P,.., P,,. (2.7) 

This product depends on &n2 + n - 2) phase parameters d,,, 2 < i < n, 1 <j< 1, and 
j(~‘-n) radial parameters p,,, 1 <j< i<n, for a total of n2 - 1 parameters, as is 
appropriate for Sl;(n). 

For the cast n = 2, WC have, in this notation 

A=(12)= 
i 

P21 cxp( - &?) --Pan q-&L,) 

PZI CXP(4732,) P2, CXP(id22) > 

For the case n = 3, we have 

with 

A= (12)(13)(23) 

A1 6 ev( - hM 

i 

A12 A13 

= P21P31 cxP(&,) A 22 A 23 

p31 exp(id3, 1 Pithy W&Z) PiI P3: exp($33) 

(2.8) 

(2.9) 

A23 = -ibItt cxp[i(422 -dSZ)l - Prlp31P;.? exp[i(&l -h + &.;)I. 

In the Sli, case, there are three radial parameters and five phase parameters. 
When A is given, the parameters arc fixed by the phases of A,,, A,,, A,,, A,,, A,, 
and the magnitudes of A3,, Azl, and A,,. Or, if the parameters are given, e.g., by a 
Monte Carlo sampling, the above formulas give the elements of A. 

2. A Second Factoring 

Let a new set of phases be defined by rn = I$,,,~ and $,, = I$,, - d,,,, for 1 d i < n - 1. 
As an alternative to Eq. (2.5), set 

P:,=(G)’ (2,)‘... (n - 2, n)’ (n- I, 17)’ (2.10) 
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where (i,)’ is an W(n) matrix which acts on YCi)@ T/(“) like the reduced SU, 
matrix 

( Pni -PniexP(-$,i) 

Pni exp(i*,J Pni ) 

and acts like the unit matrix on the complement space. Then the relation between 
the last rows of A and I$ is 

and the analog of Eq. (2.6b) is 

B’ 0 
A= 

0 exp(ia,) 
P’ 

n’ 
(2.11) 

where B’ is SU(n - 1). This process can be iterated as before to yield a complete 
factorization 

A=d(a)P;P;...P:,. (2.12) 

Here d(a) is a diagonal SU(n) matrix with diagonal elements exp(ia,). The phase 
a,, which is the last to be defined in this process, is not independent of the other a- 
phases because the cli sum to zero. This parameterizes A in terms of $(n’-n) p 
variables, identical to the ps of the previous section, an equal number of 1G, 
variables, and y1- 1 independent CI variables. The relation between the old and new 
phases is 

%l=QL 
ai=#ii-4f+I,i+l for 26i<n-1, 

a1 = -422, 

(2.13a) 

and 

*nj = 4nj - dnx for 1 djdn- 1, 

+ij=#ij-bii+di+l,i+l for l<j<i<n-1. (2.13b) 

The parameterization defined by Eq. (2.7) is our candidate for the efficient ran- 
dom generation of SU(n) matrices distributed according to the invariant measure of 
the group. If, however, the random selection of matrices is to be biased with respect 
to one or more unitary invariants of the matrices, such as the set of eigenvalues, or 
the trace, an alternative representation is needed. The second representation, 
Eq. (2.12), is introduced as a step toward this alternative. 
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3. A Third Factoring 

Given an SU(n) matrix A, let D(O) be the diagonal matrix whose diagonal 
elements are its eigenvalues exp(i0,). 1 <n, taken in any order. Let c’ be an SC:(n) 
matrix which diagonalizes A as follows: 

A = U ‘D(O) I:. (2.14) 

The eigenphases are constrained by C 0, = 0 (mod 2x). Eq. (2.14) does not specify i’ 
uniquely. If X is any diagonal SC:(n) matrix, XU will do as well because A’ com- 
mutes with D(0). One way to pick a unique member of the class of {XC:) is via thi: 
representation (2.12): Select the V in this class whose D(a) factor is unity. Thus our 
third factorization has the form 

where 

V(p. y/)= P;P;... p;,. 

Then V(p, w) depends on i(n’ - n) radial variables and an equal number of phase 
variables as prescribed by (2.10). and D(0) depends on IZ - I eigenphases. Again, ./I 
depends on n2 - 1 variables. 

4. Additional Details 

First, let 

4,(n) = ]‘I Pnh for I 6 i < 17 - 1. (2.16) 
h-l 

and let q,)(n) = 1. Then the matrix elements of P,,, Eq. (2.5) can be summarized 
compactly as follows: 

(P,),, = v(iA,) ~,,q, I(n) = A,, for I <j d 12, 

V,,),, = 0 for 1 <j<i<n, 

(P,,),, 1.n j =ew(-id,,,)P,,,,, I3 (P,,),, = /,,,, for 1 < i < n -_ 2, 

fpu),= -edit -4,,i+ d,,)l Pn,Pn,q, I(n).‘4,(n~ 

= -exp( -id,,) p,,,A.Jql(n), 1 did)?-2. i<j<n. 

(P,,), l.,t = -ext.-d -@,., II P,.,,. l 

= -expC - i(d,,., I +4n,,)1 v,,.,! iA,,n,‘~,,- i(n). 
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Second, from this specification and (2.6a), we can express the components of B as 

B,j = AtiOn, + ($, A%A,,) exp(i4ni) p,,lq,(n), 1 djdn-2, 

for all i < n - 1. To obtain the elements of B on and below the principal diagonal 
from this formula, it is suflicicnt to know the elcmcnts of A on and below the prin- 
cipal diagonal. Then, calculation of the complete factorization Eq. (2.7) and of the 
polar parameters from a given A utilizes only the elements of A on and below the 
principal diagonal. 

ITI. INVARIANT MEASURE FOR SC(n) 

1. The Measure in Terms of Polar Coordinatu 

We adopt a complex notation for differentials and for ii-functions. For example, 

d2”A, = fi (d Ke A,)(dIm A,f), 
j= I 

ci”‘(A:. Aj) = &(Re AT. Aj) ii(Im A:. Aj). 

If M is a complex matrix, then A = A’M defines a linear transformation on the rows 
of A and 

d’“A, = / det M /’ &“A;. 

The invariant measure p,,(A) on SU(n) can bc expressed formally by 

p,JA) ? 1 d,(4) d(phase(dct A)) fi d’“A,. d ,‘I 
(3.1) 

The sign z means the two sides differ at most by a constant factor. Here, /1,,(A) is 
the product of n h-functions of type 6( 1 - 1 Ail’) for row normalization and 
$~(n - 1) d-functions of type d(‘)(A:. Aj) for row orthogonality. Because orthonor- 
mality implies ) det A 1 = 1, only phase (dct A) must be set as an additional con- 
dition. The A, comprise 2n’ real variables initially varying on (-CD, ,xJ). The 
crossed integral sign calls for enough integrations to absorb the ii-functions. To 
verify right (and hence left) invariance of this measure, one notes that right trans- 
lation of A by a group element defines a unitary, unimodular transformation on 
each row, leaving dct A, the orthonormality relations, and d’“A, invariant. 
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For the case n = 2, integration of (3.1) over dC4’A, yields 

dp2(A)zjd(l - IA,I’)&A,, 

displaying the SU, invariant measure as equivalent to the surface measure ds, for a 
hypersphere in 4-space (as is well known). The Euclidean coordinates of the 4-space 
are here represented by the two real and two imaginary components of the last row 
of A. 

More generally, dv, can be related to dpnp 1 as follows: Set dp,(A) = cd/?ds2?,, 
where 

n-1 

az m 6’2’(A,*.Ai) d2A,= /A,,1 -12n-2), 
i=l 

dflgf d,- ,(A) G(phase(det A)) Rfi’ d2A+ 
i,j = 1 

ds,,r 6(1-IAJ2)d2”A,. E 

Here, A, ,(A ) is the product of b-functions for orthonormality of the first n - I 
rows of A. In the Zn-space spanned by the real and imaginary elements of the last 
row of Al d.r,,, is the surface measure of the unit hypcrspherc. 

Now let P,, bc any SU(n) matrix whose last row coincides with the last row of ,4. 
Let 2 and P be (n - 1) x (n - 1) matrices formed from A and P,, by deleting the last 
rows and last columns. Then. the relations 

A= P 
n’ 

J=Bp, 

detinc a transformation between (n - 1)2 variables A,,. 1 < i, j< n - 1, and (n -- 1 )2 
new variables B, comprising the matrix B. The first relation gives ,4 as a right 
translation by the W(n) matrix P,,, hence 

A.-,@)=A.-l(B) and det A = det B. 

The second relation is the specific transformation, row by row, of B to A, so that 
for 1 <i<n-1, 

n-l 

n d2A,= ldet ~,~2d2” *B,. 
j= I 

Hence, 
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Moreover, 

A,*, = (P,),*, = (PF~)~,, = [cofactor of (P,),,]/det P, = det P,,. 

Then, 0 cancels against the det factor in dp and 

~M)~&,-I(@ ds,,. 

This process can be continued by defining a series of Pk and ds,, down to k = 2, 
giving 

&n(A)= fi dszc. (3.2) 
k=2 

Finally, we make this formalism concrete by introducing the generalized polar 
coordinates to parameterize the P, and hence A. Then (compare with (2.4) and 
(2.16)) 

ds2kg I JCCCldk)12) fi Cqj- I( ci(PkjJ2 dd/ci 
j=l 

k-l 

S ddkk fl d(jikj)2k- ‘j df+hkj. 
j=l 

The complete representation of the invariant measure in terms of the polar 
parameters is then 

n i-l 

dp,(A)zdp,(p, 9) = fl &ii fl d(&J2’-” d&. 
i=2 j=l 

(3.3) 

For n = 2 and y1= 3, this reads 

dl-lz(A)~&(p, M=4P,J2 4214L2, (3.4) 

drdA)~dAp, 4)=d(iM2 4Pd4 4M2 d~21d~22d~31d~32d~33. (3.5) 

If we desire an invariant measure normalized to 

s &z(A) = 1, 

we have only to replace each 4, by (27~) - ’ 4ii. 
The formula (3.3) for invaiant measure is completely separable with respect to 

the polar parameters. When the quantities (pij)2’-V and (27~) -’ dii are taken as the 
group parameters, we have a continuous map from the group SU(n) to the unit 
hypercube in n2 - 1 dimensions such that the invariant measure on the hypercube is 
the Euclidean measure. Preservation of the topology requires that for each i, j, the 
end-point values #V = 0 and dV = 271 are identified with the same group element, and 
additional identifications are implied when pv or pij vanish. 
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2. The Sampling Process 

To generate SLi(n) matrices distributed according to cfp,, one would first 
generate the polar parameters p,,, tiii according to Eq. (3.3), then compute the pij 
and the Pl;. and calculate A from (2.7). To generate a set of p distributed according 
to d(p)“‘, set either 

C, = Max(zc,) U* ,... I u,,,) 

or 

/I = (u) ““1, 

where the US are uniformally distributed random numbers on (0, I). There will be 
an m, such that the first way is faster for r77 6 VIM and slower for m > m,. In our 
experiments, m ,z7 for a Cray in scalar mode, and moz 5 for a Cray in vector 
mode. For large n, computer time goes like n4. 

This may be compared with the well-known method which begins by uniform 
sampling (n times) of the surface of a unit hypersphere in 211 dimensions. The sam- 
ples become the rows of an n x n complex matrix which is converted to an SC(R) 
matrix by Gram-Schmidt orthonormalization. For large II, computer time is 
proportional to n3. 

Therefore, our polar coordinate method will not be competitive in computing 
speed with the conventional method in the limit of large n. Rut it appears to be 
faster for not-too-large n values, the exact range depending on the choice of com- 
puter, choice of compiler, and the way the algorithm is cmbcdded in the intended 
application. As an example, we found the present method 58% faster than the 
Gram-Schmidt process when both were programmed for SC:(3) sampling on the 
Cray 1-S and Cray XMP in vector mode. 

3. Incariant Measure for the Factoring A = V - ‘D V 

The Ic/ and TX angles of the second factoring are simple translations of the 4s. The 
measure in terms of the parameters of the second factoring can be cxprcssed as 

4dA ) 2 dv,,b ti )4t(u), (3.7 1 

where 
,, I -- 1 

1) (Ha 

and 

h:(a)= fj dx,. 
i- 2 

Now consider an ensemble of matrices A defined by 

A=U;-‘UzU,, 

(3.&b) 
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where the U, and U, matrices are both distributed according to the SU(n) measure. 
Then A is distributed according to &,(A) because the A-ensemble differs from the 
U,-ensemble only by left and right translations. Let U, = UC ‘D(f3) U,, where U, is 
SU(n) and D(0) is a diagonal form of U,. Then D(0) is also a diagonal form of A, 
with eigenvalues exp(i0,) taken in any order. The measure for U, can be expressed 
as a product (see [4], Chap. S]) d.&(0) d,li(U,) of measures depending on D(0) 
and U3 separately. In particular, 

d&(O) = n t [exp(ie,) - exp(iHi)]12 fi d6, 
icj k=2 

= n sin2 y kc2 dek. 
icj 

(3.9) 

The matrices U, = U3 U1 are also invariantly distributed, being left translations of 
U,. Let U, = d(a) V(p, v) be the factoring of U, according to the second rule, 
Eq. (2.12), with d(a) diagonal. Then we arrive at the representations 

and 

(3.10) 

&,(A) g dv,(p> ur) d&(e) (3.11) 

with dv,, d,$, given by (3.8a) and (3.9). This provides an explicit separation, both in 
the parametric representation of an SU(n) matrix, and in the representation of the 
invariant measure, of the n - 1 parameters oi which determine the unitary 
invariants of A. 

IV. AN ELEMENTARY EXAMPLE: TRACE-BIASED SAMPLING FOR SU(2) 

For A = V- ‘DV in the SU, case, we have, dropping the unnecessary subscripts, 

and 

A = COS 0 - i(2p2 - 1) sin f3 2ipp exp( - i4) sin B 
2ipp exp( id) sin 8 cos 0 + i(2p2 - 1) sin (3 > ’ 

(4.1) 

dpz(a)rsin2 8 d0 d(p)* dq5. (4.2) 

The matrix A is in the neighborhood of the unit matrix I when 0 is close to 0, 
that is, when t = trace A = 2 cos 8 is close to 2. To sample stepping matrices for an 
SU(2) lattice calculation, i.e., matrices biased toward I but otherwise uniformly dis- 
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tributed in SU(2) measure, one may select p, C$ according to d(P)2 d# and 8 (or E) 
according to 

dA =f(cos 19) sin2 8 de = dF( t), 

where f (cos /3), or equivalently F(t), defines a weighted distribution, and depends 
on parameters to be tuned by numerial experiments or physical insight to maximize 
thermalization and decorrelation rates in lattice generation. If dl does not go like 6’ 
d0 near 8 = 0, i.e., like (2 - t)l’* dt near t = 2, oversampling of stepping matrices 
near I may occur, leading to calculational inefficiency. 

0ur objective can be formulated as follows: Define a t distribution which can be 
easily sampled, is properly behaved near t = 2, and whose average i and standard 
deviation o can be prescribed over a useful working range including, say, the range 
1gt<2. 

To implement this, let Y and s be randomly selected frorn the uniform distribution 
on (0, l), let b and IV be real positive parameters, to be determined from t and G as 
specified below, and let t be determined by solving 

s=exp{-[(2-t)/(b+wv)]3.“). (4.3) 

Then t can be between - co and 2, but in practice, t values less than -2, which 
cannot represent the trace of an SU(2) matrix, will occur infrequently and can be 
dropped or reset to t = -2. The effective t-distribution is then dF(t), where 

Jv)=j:;, exp(-[(2-t)/(b+Wr)]3.i2i dr. 

Then s dF( t) = 1 and dF/dt goes like (2 - t)‘/’ for t near 2. 
We identify certain r-function integrals 

s 
0 

c, = z d[exp( -z312)] = r(s) = 0.90274 52930 
% 

and 

c2 = I ’ z’d[exp( --z312)] = I(j) = 1.19063 93488. 
x 

Then 

i= tdF(t)=2-c,(b++w) 
1 

o’= (t2-(02)dF(t)= 
I 

9 (2 - f)2 + Mj’/R2. 

Hence, 
w2 = 12[c:o2- (c2 - cf)(2 - t]2]/c:cz, h=(2-t7/c1-$w. 
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The sampling algorithm for the trace-biased distribution is then: calculate b and 
w from prescribed values of t and o; choose r and s randomly on (0, 1); and solve 
(4.3) for t. Then sample p and 4 from (4.2) and compute A from (4.1). 

V. PARAMETERIZATION AND INVARIANT MEASURE FOR So(n) 

1. The Analogy to SU(n) 

We develop here two alternative parametrizations of so(n) which parallel the 
work of Section III. The first provides a factoring of an SO(n) matrix into a 
product of matrices of SO(2) type, but the form taken on by the invariant measures 
makes random selection of the parameters inconvenient and perhaps unfeasible for 
practical application for n larger than three or four. The parameters and factored 
forms are substantially those of Murnaghan [4] for SO(n). The second 
parameterization is a variant that does allow efficient sampling, but apparently 
loses the connection to an elegant factorization. 

If A is an $0(n) matrix, Eq. (3.1) still defines the invariant measure provided the 
A, are understood to be real and 6 (phase(det A)) is deleted. A restriction to 
det A = 1 must be added. Let P, be redefined as an SO(n) matrix whose last row 
coincides with the last row of A, and let B be the associated SO(n - 1) matrix in 
analogy to Eq. (2.6). P, is not tied to any specific parametrization at this point. The 
development follows that of Section IT1 in form, if not in all detail, and the analog 
of (3.2) is 

&,(A)= fi dsk, 
k=2 

(5.1) 

with 

A= P,P,... P, 

and ds, being the surface element for a hypersphere in a k-dimensional space whose 
Euclidean coordinates are the k (real) elements of the last row of Pk. 

2. First Parametrization 

Suppose we take over the parametrization of Eq. (2.3) but replace the phase fac- 
tors by unity. We must allow both pli and piJ to vary on (- 1, + 1) and allow both 
signs in piJ = -t( 1 - (p,)2)1’2 (with equal probability in a sampling calculation). One 
can also set pti=cos yu, pti=sin yti, and allow yII to vary on (0,271). 

Then we can define (q) as an SO(n) matrix of SO(2) type on I/“)@ F’(1), icj, 
whose SO(2) part is 
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The factorization of A is expressed by 

A=jlP, 
k=2 

where 

Pk = (llq(2K) ‘. . (k - 1, E). (5.2) 

There are +(n - 1) p parameters, as is appropriate for SO(n). The invariant 
measure is given by (5.1) with 

k-l k-l 

ds, = n (pkI)k-‘-2 dp,, = n (sin yki)li--‘-’ dYkl 
I=1 i=l 

The sampling difficulty referred to above is that for n 3 4, there will be distributions 
like (p)” - ’ dp or (sin y)” dy with m > 2, which cannot be sampled as 
straightforwardly as d(p)2m which occurred in the SU(n) context. 

3. Second Parametrization 

The simplicity of the task of randomly selecting the parameters can be recovered, 
at the cost of losing the factorings (5.2) for the P,, as follows: 

If k = 2m = even, let X, = (P,)ki, 1 < i < k, be the elements of the last row of P,, 
and parametrize as follows: 

XI = Pkl cos Ok, > 

x3 = PklPk2 cos ek2> 

x2 = pk, sin Qkl, 

x4 = iikl pk2 sin 8k2, 

X2r-l =PklPkZ” ’ $k,i- 1 Pkr cos Ok!> 
- - 

X2r = Pkl Pk2 ~“~k.~-lPkrsinOk~~ 

X2m - 1 = Pkl Pk2 “’ Pk.??- l Pkm cos ekpz? X2m= Pklpk2 “‘Pk.+ lPkm sin @km, 

Then we find a direct analogy to the m-dimensional complex case: 

m-1 

ds, E dekm n d(pk,)k-2J de, (with pkm = I). (5.3) 
J=l 

And if k = 2m + 1, there is one additional transformation, 

and 

ds,z fi d(pkJ)k-2J d0, (with p k,m+l= i-1). (5.4) 
j=l 

581/61/i-8 
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Let an II x y1 matrix be formed with x1, x1,.,., X, as the last row and let the kth row, 
for ldkSn--1 be 

O, o,-., O, ck, xk+,, xk+2,,-, x,, 

with k- 1 zero elements before ck, and with 

ck= - f (xl)‘/x,. 
r=h-+1 

These rows are mutually orthogonal. After row normalization the matrix can be 
taken as the definition of Pk in terms of the polar parameters. Sampling of the pkl, 
#k, from (5.3) or (5.4) is straightforward. In analogy to the SU(n) case, if (pkJ)k-2J 
and (271) -’ bkJ are taken as the group parameters, then we have a mapping from 
SO(n) to the unit hypercube in $(n”--n) dimensions such that the invariant 
measure is Euclidean measure on the hypercube. The mapping is continuous if the 
end-point values of each 4 are identified with the same group element and if 
additional identifications are made when pti or pu vanish. 

The extension of this formalism to U(n) and O(n) is routine. For U(n), multiply 
the first row of P, = (12) by exp(z&), where do is a new parameter on (0, 271) dis- 
t’ributed according to d&,. For O(n), multiply the first row of P, = (12) by + 1 or 
- 1, the two alternatives being equiprobable. 
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